Step of Proof: inv_image_ind_a
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
inv
image
ind
a
:
1.
T
: Type
2.
r
:
T
T
3.
S
: Type
4.
f
:
S
T
5. WellFnd{i}(
T
;
x
,
y
.
r
(
x
,
y
))
6.
P
:
S
7.
j
:
S
. (
k
:
S
.
r
(
f
(
k
),
f
(
j
))
P
(
k
))
P
(
j
)
8.
n
:
S
P
(
n
)
latex
by ((% Switch quantification to T %
Assert
x
:
T
,
y
:
S
. (
f
(
y
) =
x
)
P
(
y
))
A
CollapseTHEN (IfLabL
AC
[`assertion`,((D 0)
A
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
AC
)) (first_tok :t) inil_term)))
AC
;`main`,((InstHyp [
f
(
n
);
n
] (-1))
A
CollapseTHEN (
AC
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
]))
latex
AC
1
:
AC1:
9.
x
:
T
AC1:
y
:
S
. (
f
(
y
) =
x
)
P
(
y
)
AC
.
Definitions
t
T
,
x
:
A
.
B
(
x
)
,
P
Q
origin